Processing of High Resistivity Silicon

Wei Chen

Silicon Detector Group
Instrumentation Division

Content

- Basic silicon properties
- Wafer preparation
- Oxidation process
- Photolithography process
- Etching process
- Ion implantation
- Metalization process

Basic Silicon Properties Silicon Material

PERIODIC TABLE: SEMICONDUCTORS AND DOPANTS

Basic Silicon Properties

Silicon Lattice

Basic Silicon Properties N-Type Silicon

Basic Silicon Properties P-Type Silicon

Basic Silicon Properties Junction

Basic Silicon Properties Rectify Diode

Basic Silicon Properties

Diode Detector

- P-type: 0.1μm
- N-type: 200-500μm
- $W=(2\epsilon_s V/qNd)^{1/2}$ $Nd=1/q\mu\rho$ $\rho=W^2/(2\epsilon_s\mu V)$ $V\sim100V,~W\sim300\mu m,$ $\rho\sim3k\Omega cm$

Basic Silicon Properties

I-V Characteristic of Detector

Wafer Preparation

Device processing requires high quality wafers:

- Flat
- Smooth
- Uniform
- Clean

Wafer Preparation

From Ingot to Wafers

Wafer Preparation Cleaning

- Mechanical cleaning
 - Spray rinsing
 - High pressure jets
 - High speed scrubbing
- Chemical cleaning
 - RCAI (NH₄OH:H₂O₂:H₂O)
 - RCAII (HCL:H₂O₂:H₂O)
- Mechanical-chemical cleaning
 - Megasonic +Chemicals

Wafer Preparation

Contaminants

- Heavy metal
 - Fe, Cu, Ni, Zn, Cr, Au, Hg, Ag (They create trapping sites and lower the performance.)
- Alkali metals
 - Na, K (They create positive ions)
- Light elements
 - Al, Mg, Ca, C, Cl, F (Less serious)

Wafer Preparation Chemical Solutions

PARTIAL LIST OF SILICON WAFER CLEANING SOLUTIONS

Solution	Chemical Symbols	Common Name	Purpose or Removal of:
Ammonium hydroxide/ hydrogen peroxide/ water	NH ₄ OH/H ₂ O ₂ /H ₂ O	RCA-1, SC-1 (Standard Clean-1), APM (ammo- nia/peroxide mix), Huang A	Light organics, particles, and metals; protective oxide regrowth
Hydrochloric acid/ hydrogen peroxide/ water	HCI/H ₂ O ₂ /H ₂ O	RCA-2, SC-2 (Standard Clean-2), HPM (hydro- chloric/peroxide mix), Huang B	Heavy metals, alkalis, and metal hydroxides
Sulfuric acid/ hydrogen peroxide	H ₂ SO ₄ /H ₂ O ₂	Piranha, SPM (sulfuric/ peroxide mix), "Caros acid"	Heavy organics
Hydrofluoric acid/water	HF/H ₂ O	HF, DHF (dilute HF)	Silicon oxide
Hydrofluoric acid/ ammonium fluoride/ water	HF/NH ₄ F/H ₂ O	BOE (buffered oxide etch), BHF (buffered hydrofluoric acid)	Silicon oxide
Nitric acid	HNO ₃	<u>—</u>	Organics and heavy metals
Potassium Hydroxide	кон	_	Silicon
Hydrofluoric and/ Nitric acid	HF/HNO ₃	<u> </u>	Silicon; Glass

Oxidation Process

- Silicon Dioxide (SiO₂) provides
 - High quality insulating barrier
 - Impurity-diffusion barrier
 - Passivation
 - Gettering of impurities in Si

Oxidation Process

Oxidation Process Thickness

For long time growth

$$Xo = \sqrt{Bt}$$

B: parabolic rate constant

t: time

Oxidation Process Important Influence

- Temperature control
- Crystal orientation
- Dopant concentration
- Ambient in the process chamber
- Concentration of Chlorine added to ambient
- Pressure of chamber
- Post oxidation anneal
- Prior operation

Oxidation Process Parameters

- Slower growth in dry oxygen results in a denser, higher quality oxide
- The addition of chlorine during oxidation improves oxide quality
- Oxide thickness can be estimated by the color or other techniques.

Oxidation Process Our Parameters

- Dry oxygen grown oxide (32hr)
- 0.5% TCA
- About 0.5um thick (wafer about 200-500um)

Photolithography Process

- Produces optical images in a light sensitive film (Photoresist)
- Images are reproduction of photomask
- It is an integration of steps which strongly influence one another:
 - Photoresist and application
 - Exposure
 - Develop

Photolithography Process Flowchart

Photolithography Process

Photolithography Process Choice of Photoresist

Characteristic	Positive Resist	Negative Resist	
Exposure	Molecular changes permit dissolution of exposed regions.	Rely upon crosslinking for image formation.	
Molecular Weight	No molecular weight changes — chemical change in non-image areas.	High molecular weight products formed during exposure.	
Oxygen Sensitivity	No oxygen sensitivity.	Have oxygen sensitivity, causing exposure problems.	
Removal	Easy removal, as no high molecular weight products present.	Are difficult to remove, due to high molecular weight.	
Chemical Stability	Excellent chemical stability and good filtration flow rates.	Have marginal chemical stability causing low filtration flow rates.	
Developing	Aqueous developing; the image is unaffected by the developer. Disposal is relatively simple.	Solvent developing; resulting in image swelling. Also, disposal is more difficult.	
Coating Thickness and Resolution	Coating thickness can be equal to or greater than minimum image size.	Coating thickness must be 1/3 the minimum image size.	
Step Coverage	Excellent, as thick coatings can be used.	Marginal, due to thin coating limitations.	
Cost	Higher cost than negative resist.	Relatively inexpensive.	

Photolithography Process Method of Softbake

Photolithography Process Exposure Technologies

Photolithography Process Industry Technology

Photolithography Process Spectrum

Photolithography Process Advanced Technology

- Direct electron beam writing
 - Munch higher precision, higher resolution
 - Lower throughput
 - Complicated, expensive
- Projection e-beam
 - Higher throughput
- X-ray lithography
 - Difficult to precisely focus (very high theoretical resolution)
 - Masks must block x-rays yet maintain resolution
 - X-ray hazards

Photolithography Process Industry Trend

Photolithography Process Our Data

- Photoresist: Positive, S1811 (Shipley)
 - $-0.5\mu m\sim 2.5\mu m$
- Softbake: Hotplate contact or proximity
- Exposure: Proximity and Contact print, ultraviolet light
- Developer: MF-312 (Shipley)

Etching Process Basic Etching techniques

- Wet etching
 - Chemical solution
 - Isotropic
- Dry etching
 - Chemical gas
 - Anisotropic

Etching Process Wet Etching

- Advantages
 - Low cost
 - Reliable
 - High throughput
- Disadvantages
 - Isotropic
 - Resist adhesion
 - Non-uniformities

Etching Process Chemicals

- Etching SiO₂: HF solution
- Etching Al: HNO₃+H₃PO₄+C₂H₄O₂ solution
- Etching Si: HNO₃+ HF solution
- Etching Si₃N₄:H₃PO₄ solution

Etching Process Dry Etching

- Advantages
 - Anisotropic
 - Less chemicals
- Disadvantages
 - Complex equipment
 - Costly

Ion Implantation Process

- Introduces dopants as ions at controlled energies
 - Profile is determined by ion energy
 - Dose is accurately measured from beam current and known scan areas
 - Ion species is selected by mass analyzer
 - Process is at room temperature permitting the use of photoresist for masking

Ion Implantation Process Implanter

Ion Implantation Process

Advantages

- Precise dose control
- Extremely pure dopant beam
- Small lateral distribution
- Inject through a surface protective layer
- Multiple implants
- Highly abrupt junctions
- Low temperature process

Disadvantages

- Surface damage
- Expensive and complex equipment
- Low throughput
- Shallow implantation depth for heavy atoms

Ion Implantation Process

Post Implant Anneal

- High temperature process (600~1100 c)
- Repairs damage
- Electrically activates dopants
- Ambient:O₂, N₂, N₂O, Ar

Metalization Process

- Provides contacts and interconnections
- Requirement
 - Low resistance "ohmic" contacts
 - Low sheet resistance
 - Reliable interconnections

Metallization Process Choice of Metal

- Advantages of Al
 - Inexpensive
 - Ease of forming contacts
 - Excellent adherence to Si and SiO₂
 - Low bulk resistivity (2.7 $\mu\Omega$ -cm)
 - Excellent bondability
 - Easy to process
- Disadvantages
 - Spiking
 - Not sustain higher temperature over 450 °C

Metalization Process

Spiking

Metalization Process Sputtering

Metalization Process Sintering

- To ensure good contact formation, Al is normally sintered at 450°C following deposition and patterning
- Si diffuses into the Al during sintering. The diffusion may cause spiking
- To prevent spiking
 - use Al-Si alloy (~1% Si)

Flowchart of The Detector Process

Our Facility and Products

- Class 100 cleanroom, equipments, simulation tools, mask design tools and testing equipments.
- Strip, Pad, Drift chamber, Pixel and Active matrix detector
- We are the only one in this business

Basic Silicon Properties Silicon Structure

Oxidation Process

Temperature influence

Oxidation Process

Photolithography Process Industry Trend

Strip Detector

Drift Chamber Detector

CLASS-100 CLEANROOM

Sputter

